
COMPLEX AND KÄHLER MANIFOLDS

1. Almost Hermitian geometry

Three subgroups of GL(2n,R):
• GL(n,C): preserves multiplication by i on R2n ≃ Cn

J0 : R2n → R2n, J0 =
󰀕

0 −1n

1n 0

󰀖
, J2

0 = −12n

• Sp(2n,R): preserves the non-degenerate skew-symmetric bilinear form
ω0 = dx1 ∧ dy1 + · · · + dxn ∧ dyn

– ω0 non-degenerate: v 󰀁→ v┘ω0 defines isomorphism V → V ∗

– 1
n!ω

n
0 standard volume form on R2n

Recall: differential k-form α ∈ ΛkV ∗ on a vector space V = k-multilinear alternating map
α : V × · · · × V → R.

Basis {e1, . . . , em} of V ↔ basis {ε1, . . . , εm} of V ∗ ↔ basis {εi1 ∧ · · · ∧ εik | i1 < · · · < ik} of ΛkV ∗

defined in terms of minor determinants
• U(n) = GL(n,C) ∩ Sp(2n,R): preserves compatible (J0, ω0) ❀ positive definite symmetric

bilinear form g0( · , · ) = ω0( · , J0 · )
Exercise 5.1

Definition 1.1. Let M be a smooth manifold of dimension 2n.
(i) A Riemannian metric on M is a smooth section g of Sym2T ∗M which is positive definite

at every point.
(ii) An almost complex structure on M is a smooth section J of End(TM) such that J2 =

−idT M .
(iii) A non-degenerate 2-form on M is a smooth section of Λ2T ∗M that is non-degenerate at

every point.
We say that (M2n, g, J, ω) is an almost Hermitian manifold if the Riemannian metric g, almost
complex structure J and non-degenerate 2-form ω are related by g( · , · ) = ω( · , J · ).

2. Integrable almost complex structures and complex manifolds

M2n with almost complex structure J

• decomposition TM ⊗ C = T 1,0M ⊕ T 0,1M into ±i–eigenspaces of J
• T ∗M ⊗ C = Λ1,0T ∗M ⊕ Λ0,1T ∗M ❀ du = ∂u + ∂u for every u ∈ C∞(M ;C)
• Cauchy–Riemann operator: u J–holomorphic if ∂u = 0
• Λ2T ∗M ⊗ C = Λ2,0T ∗M ⊕ Λ1,1T ∗M ⊕ Λ0,2T ∗M
• α ∈ Ω0,1(M) ❀ dα = d2,−1α + ∂α + ∂α

Recall: exterior differential d : Ωk(M) → Ωk+1(M), the unique R–linear map such that
(i) for every smooth function f , df ∈ Ω1(M) is the standard differential
(ii) d(α ∧ β) = dα ∧ β + (−1)deg αα ∧ dβ
(iii) d ◦ d = 0

• Nijenhuis tensor NJ : Λ0,1T ∗M → Λ2,0T ∗M such that d2,−1α = −NJ(α)
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• J integrable if NJ ≡ 0
Exercise 5.2

Theorem 2.1 (Newlander–Nirenberg, 1957). The almost complex structure J is induced by a
holomorphic atlas on M iff it is integrable.

Exercises 5.3 and 5.4

3. Symplectic and Kähler manifolds

M2n with non-degenerate 2-form ω

• ω symplectic if dω = 0
• Darboux Theorem: existence of coordinate charts ϕ : U → R2n such that (ϕ−1)∗ω = ω0
• Moser Stability Theorem: M closed, {ωt}t∈[0,1] family of cohomologous symplectic forms

⇒ ∃ family {ψt}t∈[0,1] of diffeomorphisms with ψ0 = id and ψ∗
t ωt = ω0.

Exercise 5.5
Recall: d ◦ d = 0 ❀ deRham complex of Mn

0 → Ω0(M) d−→ Ω1(M) d−→ · · · d−→ Ωn(M) → 0
and deRham cohomology Hk

dR(M) = {α ∈ Ωk(M) | dα = 0}/d Ωk−1(M).

Definition 3.1. An almost Hermitian manifold (M2n, g, J, ω) is Kähler iff J is integrable and ω is
symplectic. In this case ω is often referred to as the Kähler form.

Exercises 5.6, 5.7, 5.8 and 5.9
• (M2n, J) complex: NJ ≡ 0 ⇒ ∂ ◦ ∂ = 0 ❀

• Dolbeault complex

0 → Ωp,0(M) ∂−→ Ωp,1(M) ∂−→ · · · ∂−→ Ωp,n(M) → 0
and Dolbeault cohomology Hp,q

∂
(M) = {α ∈ Ωp,q(M) | ∂α = 0}/∂ Ωp,q−1(M)

• Hodge theory for closed Kähler manifolds: Hp,q

∂
(M) = Hq,p

∂
(M) and Hk

dR(M ;C) =
󰁏

p+q=k Hp,q

∂
(M)

Proof. Some global analysis on manifolds needed for this:
– M closed: Hk

dR(M) 1:1←→ Hk(M) = {α ∈ Ωk(M) | △α = (dd∗ + d∗d)α = 0}
– (M, g, J, ω) Kähler ⇒ J parallell with respect to the Levi-Civita connection of g ⇒

△ preserves type (p, q)-decomposition □

4. Holomorphic bundles and Chern connections

(M, J) complex manifold + E → M smooth complex vector bundle of rank k

• connection: C-linear map ∇ : C∞(M ; E) → Ω1(M ; E) = C∞(M ; T ∗M ⊗ E) such that
∇(fs) = df ⊗ s + f∇s

for every s ∈ C∞(M ; E) and f ∈ C∞(E;C)
• in a local trivialisation (or gauge) E|U ≃ U ×Ck: ∇s = ds+As for A ∈ Ω1(U ;C)⊗gl(k,C)
• change of gauge: g : U → GL(k,C) ❀ g∗∇ = d+gAg−1 − (dg)g−1, i.e. g∗∇(s) = g∇(g−1s)
• (E, h) Hermitian bundle: ∇ unitary if ∇h = 0 ⇐⇒ in a local unitary gauge ∇ = d + A

with A ∈ Ω1(M) ⊗ u(k)
• Cauchy–Riemann operator on E: C-linear map ∂E : C∞(M ; E) → Ω0,1(M ; E) such that

∂E(fs) = ∂f ⊗ s + f ∂Es

for every s ∈ C∞(M ; E) and f ∈ C∞(E;C) .
• connection ∇ ❀ Cauchy–Riemann operator ∂E = ∇0,1
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• Chern connection: Hermitian metric h + Cauchy-Riemann operator ∂E on E =⇒ ∃! unitary
connection ∇ with ∂E = ∇0,1

Proof. In a local unitary gauge (E, h)|U ≃ U × Ck with standard Hermitian metric on Ck

– ∂E = ∂ + α for some α ∈ Ω0,1(U ;C) ⊗ gl(k,C)
– set ∇ = d + A where A = α − α∗ □

Recall: curvature F∇ ∈ Ω2(M ; End E) of connection ∇
(i) locally F∇ = dA + A ∧ A if ∇ = d + A
(ii) F∇ = d∇ ◦ d∇ where d∇ : Ωk(M ; E) → Ωk+1(M ; E) is the exterior covariant differential
(iii) curvature as obstruction to integrability: F∇ = 0 ⇒ locally E|U ≃ U × Ck with ∇ = d

E → M holomorphic vector bundle with underlying smooth complex vector bundle E

• Cauchy–Riemann operator ∂E : in local holomorphic trivialisation ∂E = ∂
• Cauchy–Riemann operator ∂E ❀ sheaf of “holomorphic” sections O(E) = ker ∂E
• ∂E ◦ ∂E = 0 ⇐⇒ E has the structure of a holomorphic bundle E

Proof. See §2.2.2 in Donaldson–Kronheimer. □

Exercise 5.10

5. Exercises

Exercise 5.1 (More linear algebra). Let V be a finite-dimensional vector space endowed with a
positive definite symmetric bilinear form g0.

(i) Show that A 󰀁→ g0(A · , · ) defines an isomorphism between the vector space so(V, g0)
of skew-symmetric endomorphisms of (V, g0) (i.e. endomorphisms A : V → V such that
g0(Au, v) = −g0(u, Av) for all u, v ∈ V ) and Λ2V ∗.

(ii) Show that ω0 is the image of J0 under the isomorphism defined above.
(iii) Deduce that any two of g0, J0, ω0 determine the third one and that U(n) = SO(2n) ∩

GL(n,C) = SO(2n) ∩ Sp(2n,R).

Exercise 5.2 (The Nijenhuis tensor). Let J be an almost complex structure on M .
(i) Verify that d2,−1 is tensorial, i.e. d2,−1(fα) = f d2,−1α for any function f and (0, 1)-form

α. Deduce the existence of the Nijenhuis tensor NJ , i.e. the existence of a section NJ of
Hom(Λ0,1T ∗M, Λ2,0T ∗M) such that d2,−1α = −NJ(α) for every (0, 1)-form α.

(ii) Under the isomorphism

Hom(Λ0,1T ∗M, Λ2,0T ∗M) ≃
󰀓
Λ0,1T ∗M

󰀔∗
⊗ Λ2,0T ∗M ≃ T 0,1M ⊗ Λ2,0T ∗M

identify NJ with the skew-symmetric map NJ : T 1,0M × T 1,0M → T 0,1M defined by
NJ(X, Y ) = [X, Y ]0,1.
(Hint: use the fact that dα(X, Y ) = X · α(Y ) − Y · α(X) − α([X, Y ]) for every 1-form α
and vector fields X, Y .)

Exercise 5.3 (The Newlander–Nirenberg Theorem). In this exercise you discuss some easy aspects
of the proof of the Newlander–Nirenberg Theorem 2.1.

(i) Show the easy implication of the Newlander–Nirenber Theorem: if J is induced by a holo-
morphic atlas then J must be integrable.

(ii) Show that the converse “hard” implication amounts to showing that, assuming J is in-
tegrable, for every point p ∈ M there exists an open set U ⊂ M containing p and
J–holomorphic functions z1, . . . , zn : U → C such that (z1, . . . , zn) : U → Cn is a dif-
feomorphism onto its image.
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Exercise 5.4 (Almost complex structures on spheres). In this exercise you construct almost com-
plex structures on S2 and S6. The latter is non-integrable and deciding whether S6 carries an
integrable almost complex structure is a famous open problem. It can be shown (Borel–Serre,
1953) that spheres of dimensions ∕= 2, 6 cannot carry almost complex structures.

(i) Let S2 denote the unit sphere S2 = {x ∈ R3 | 󰀂x󰀂 = 1} in R3. Given x ∈ S2 identify TxS2

with the plane x⊥ ⊂ R3. Show that the formula
Jx(u) = x × u,

where × denotes the cross product on R3, defines an almost complex structure on S2. Show
that this almost complex structure is integrable.
(Hint: you can answer the last question without doing any computation.)

(ii) The existence of the octonions O implies the existence of a cross product on R7 = ImO,
a bilinear alternating map × : R7 × R7 → R7 with the properties that u × v is orthogonal
to u and v and has norm |u × v|2 = |u|2|v|2 − (u · v)2. One simply sets u × v = Im(uv),
where uv is octonionic multiplication. Show that the formula of part (i) defines an almost
complex structure J on the 6-sphere S6 and that the non-associativity of the 7-dimensional
cross product makes J non-integrable.

Exercise 5.5 (Moser’s trick). In this exercise you prove the Moser Stability Theorem.
(i) We begin with some observations about time-dependent vector fields. Let ψ : [0, 1] × M →

M be a smooth map such that ψt = ψ(t, · ) : M → M is a diffeomorphism for every t. Define
a 1-parameter family of vector fields {Xt}t∈[0,1] on M by Xt = d(t, · )ψ

󰀓
d
dt

󰀔
. Conversely,

if M is closed (or if the vector fields are compactly supported) a family of vector fields
{Xt}t∈[0,1] generates a family {ψt}t∈[0,1] of diffeomorphisms with d

dtψt = Xt◦ψt and ψ0 = id.
Let {αt}t∈[0,1] be a smooth 1-parameter family of k-forms on M . Show that

d

dt
ψ∗

t αt = ψ∗
t

󰀓
d
dtαt + LXtαt

󰀔
.

(ii) Let {ωt}t∈[0,1] be a smooth family of symplectic forms and suppose that d
dtωt = dµt for

a smooth family {µt}t∈[0,1] of 1-forms. Construct a family {Xt}t∈[0,1] of vector fields such
that LXtωt + d

dtωt = 0.
(Hint: recall Cartan’s Magic Formula LXα = d(X┘α) + X┘dα.)

(iii) Deduce Moser’s Stability Theorem from parts (i) and (ii).
(iv) Let (M, J) be an almost complex manifold and suppose that ω0 and ω1 are two symplectic

forms on M compatible with J . Show that ωt = (1 − t)ω0 + tω1 is a family of symplectic
forms compatible with J .
(Hint: consider the corresponding family of Riemannian metrics using the fact that the set
of positive definite bilinear forms on Rn is convex.)

(v) Let (M, g0, J0, ω0) be an almost Hermitian manifold with ω symplectic (such manifolds are
sometimes called almost Kähler). Consider the sets

J (ω0) = {ω0–compatible almost complex structure J},

H(J0, [ω0]) = {J0–compatible symplectic form ω with [ω] = [ω0] ∈ H2
dR(M)}

and the subset Y(J0, ω0) ⊂ Diff0(M) × H(J0, [ω0]) consisting of pairs (f, ω) where f is a
diffeomorphism isotopic to the identity such that f∗ω = ω0. Use parts (iii) and (iv) to
construct a map Φ : Y(J0, ω0) → J (ω0).

Exercise 5.6 (Projective manifolds). In this exercise you show that complex projective space CPn

and its holomorphic submanifolds are Kähler.
(i) Show that ωFS = i∂∂ log (1 + |z|2) is a Kähler form on Cn. Here |z|2 = |z1|2 + · · · + |zn|2.
(ii) Show that if ϕ(z1, . . . , zn) = z−1

1 (1, z2, . . . , zn) then ϕ∗ωFS = ωFS.
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(iii) Show that the charts (Ui, ϕi) defined by

ϕi : Ui = {[z0 : · · · : zn] | zi ∕= 0} → Cn, ϕi([z0 : · · · : zn]) = z−1
i (z0, . . . , ži, . . . , zn),

where ži means that we drop the ith coordinates, form a holomorphic atlas on CPn.
(iv) Show that the formula ω = ϕ∗

i ωFS over Ui defines a Kähler form on CPn, called the Fubini–
Study Kähler form.

(v) Let M be a complex submanifold of CPn. Show that M is Kähler.
(Hint: consider the restriction of the Fubini–Study Kähler form to M .)

Exercise 5.7 (Hopf surface). In this exercise you show that there are complex manifolds that
cannot be Kähler.

(i) Let (M, ω) be a closed symplectic manifold. Show that the deRham cohomology class
[ω] ∈ H2

dR(M) cannot vanish.
(Hint: use Stokes’ Theorem and the fact that ωn is a volume form.)

(ii) Fix a real number s ∕= 0 and let Z act on C2 \ {0} by n · (z1, z2) = (ensz1, ensz2). Define
M4 = C2 \ {0}/Z. Show that M is a complex manifold.

(iii) Show that M is diffeomorphic to S1 × S3 and conclude that M cannot be Kähler.
(Hint: work in spherical coordinates on C2 \ {0} ≃ R+ × S3.)

Exercise 5.8 (Kodaira–Thurston manifold). In this exercise you show that there are symplectic
manifolds that cannot be Kähler.

(i) Show that if (M, g, J, ω) is a closed Kähler manifold then H1(M ;R) is even dimensional.
(ii) Let (n, m) ∈ Z2 act on R2 by translation (x, y) 󰀁→ (x + n, y + m) and on T2 via the matrix󰀕

1 n
0 1

󰀖
∈ SL(2,Z). Let M be the 4-manifold M = (R2 ×T2)/Z2. Show that the standard

symplectic form on R2 × T2 descends to M and defines a symplectic form on M .
(iii) Calculate the first deRham cohomology group of M and conclude that M cannot carry

any Kähler structure.
(Hint: you can either study Z2–invariant closed 1-forms on R2 ×T2 or calculate the funda-
mental group of M , thus its first homology, and then use the fact that deRham cohomology
is dual to homology with real coefficients.)

Exercise 5.9 (Hyperkähler 4-manifolds). A hyperkähler triple on a 4-manifold is a triple (ω1, ω2, ω3)
of symplectic forms satisfying

ωi ∧ ωj = δij
1
3

󰀓
ω2

1 + ω2
2 + ω2

3

󰀔
.

(i) Work on R4 with coordinates (x0, x1, x2, x3). Show that the forms

ωi = dx0 ∧ dxi + dxj ∧ dxk,

where (ijk) is a cyclic permutation of (123), define a hyperkähler triple. Show also that you
can identify R4 with the quaternions H so that the almost complex structures corresponding
to ω1, ω2 and ω3 using the standard inner product on R4 as in Exercise 5.1 are, respectively,
left multiplications by i, j and k.

(ii) Let (M4, ω1, ω2, ω3) be a manifold endowed with a hyperkähler triple. Write ω = ω1 and
ωc = ω2 + iω3. Show that ωc ∧ ωc = 0 and deduce the existence of an almost complex
structure J for which a 1-form α is of type (1, 0) if and only if α ∧ ωc = 0.
(Hint: you can use the fact that ωc ∧ ωc = 0 if and only if ωc is decomposable, i.e. it can
locally be written as ωc = θ1 ∧ θ2 for linearly independent complex 1-forms θ1, θ2.)

(iii) Show that J is integrable.
(Hint: observe that dωc = 0 and differentiate the relation α∧ωc = 0 valid for any (0, 1)-form
α to deduce that d2,−1α = 0.)
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(iv) Show that (ω, J) are compatible and that, denoting by g the resulting metric, (M, g, J, ω)
is Kähler.
(Hint: show that ω ∧ ωc = 0 and deduce that ω is of type (1, 1) with respect to J . Positivity
of the resulting metric can be shown by arguing that on each tangent space ω1, ω2, ω3 must
be linearly equivalent to the hyperkähler triple of part (i).)

Exercise 5.10 (Bundles and connections). This problem is a collection of three separate questions
about holomorphic bundles and connections.

(i) Show that any choice of Cauchy–Riemann operator on a complex vector bundle E over a
Riemann surface defines a holomorphic structure on E.

(ii) Let (E, h) be a Hermitian vector bundle over a complex manifold and let ∇ be a unitary
connection on E. Decompose the bundle-valued 2-form F∇ into (p, q)–types: F∇ = F 2,0

∇ +
F 1,1

∇ + F 0,2
∇ . Show that ∂E = ∇0,1 satisfies ∂E ◦ ∂E = 0 if and only if F∇ = F 1,1

∇ .
(iii) Set OCPn(−1) = {([z], v) ∈ CPn × Cn+1 | v ∈ Cz}.

(a) Show that the projection onto the first factor induces on OCPn(−1) the structure of a
holomorphic line bundle over CPn.

(b) Endow Cn+1 with its standard Hermitian metric and denote by h the induced Her-
mitian metric on OCPn(−1). Calculate the curvature of its Chern connection.

6. Some references

• J.-P. Demailly, Complex Analytic and Differential Geometry, Sections V.1–7, VIII.8
• A. Cannas da Silva, Lectures on symplectic geometry, Chapters 6–8 and 12–17
• S. Donaldson and P. Kronheimer, The geometry of 4-manifolds, Sections 2.1.5 and 2.2


