COMPLEX AND KAHLER MANIFOLDS

1. ALMOST HERMITIAN GEOMETRY

Three subgroups of GL(2n,R):
e GL(n,C): preserves multiplication by i on R?" ~ C"
Jo: R R, Jy= ( 1(1 _g” ) Jg = —1an
e Sp(2n,R): preserves the non-degenerate skew-symmetric bilinear form
wo =dxy ANdyy + -+ - + dz, A dyy,

— wp non-degenerate: v — v_wy defines isomorphism V — V*

- %w({ standard volume form on R?"

Recall: differential k-form o € A¥V* on a vector space V. = k-multilinear alternating map
a: Vx---xV =R
Basis {e1,...,em} of V ¢ basis {e',...,e™} of V* ¢ basis {e" A--- N |iy < --- < i} of AFV*
defined in terms of minor determinants
e U(n) = GL(n,C) N Sp(2n,R): preserves compatible (Jy,wy) ~ positive definite symmetric
bilinear form go(-, -) = wo(+,Jo ")
Exercise 5.1

Definition 1.1. Let M be a smooth manifold of dimension 2n.
(i) A Riemannian metric on M is a smooth section g of Sym?T*M which is positive definite
at every point.
(ii) An almost complex structure on M is a smooth section J of End(TM) such that J? =
—id7ps.
(iii) A non-degenerate 2-form on M is a smooth section of A2T*M that is non-degenerate at
every point.
We say that (M?",g,J,w) is an almost Hermitian manifold if the Riemannian metric g, almost
complex structure J and non-degenerate 2-form w are related by g(-, -) =w(-,J-).

2. INTEGRABLE ALMOST COMPLEX STRUCTURES AND COMPLEX MANIFOLDS

M?" with almost complex structure .J

decomposition TM @ C = T"M @ T%' M into +i-eigenspaces of J

T*M @ C = AYOT*M @ A®YT* M ~ du = du + du for every u € C>°(M;C)
Cauchy-Riemann operator: u J-holomorphic if du = 0

A’T*M @ C = A29T*M & AMT*M & A T*M

a € QM) ~ da = d*> ta+ 0a + da

Recall: exterior differential d: QF(M) — QF¥FY(M), the unique R-linear map such that

(i) for every smooth function f, df € QY (M) is the standard differential
(ii) d(a A B) =da N B+ (—l)degaa Ndf
(iii) dod=0

e Nijenhuis tensor Nj: A% T*M — A20T*M such that d>'a = —N;(a)
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e J integrable if Ny =0
Exercise 5.2

Theorem 2.1 (Newlander—Nirenberg, 1957). The almost complex structure J is induced by a
holomorphic atlas on M iff it is integrable.

Exercises 5.3 and 5.4

3. SYMPLECTIC AND KAHLER MANIFOLDS

M?" with non-degenerate 2-form w
e w symplectic if dw =0
e Darboux Theorem: existence of coordinate charts ¢: U — R?" such that (p~1)*w = wp
e Moser Stability Theorem: M closed, {w;};c(o,1) family of cohomologous symplectic forms
= 3 family {4 }4¢(0,1) of diffeomorphisms with 1o = id and ¥;w; = wo.
Exercise 5.5
Recall: dod =0 ~ deRham complex of M™
0— QM) L o' () L L ar (M) =0
and deRham cohomology H5p(M) = {a € Q¥(M) | da = 0}/d Q*1(M).

Definition 3.1. An almost Hermitian manifold (M?", g, J,w) is Kéhler iff J is integrable and w is
symplectic. In this case w is often referred to as the Kéahler form.

Exercises 5.6, 5.7, 5.8 and 5.9
o (M?",J) complex: Ny=0= Jod =0~
e Dolbeault complex

0 a01) L i) L 2y rn(ag) 0

and Dolbeault cohomology HZ(M) = {a € QP9(M) | Da = 0}/ QP11 (M)

o Hodge theory for closed Kéhler manifolds: H(M) = HX"(M) and HE (M;C) = @
Proof. Some global analysis on manifolds needed for this:
— M closed: H¥o(M) &5 HE(M) = {a € QF(M) | Aa = (dd* + d*d)a = 0}
— (M, g,J,w) Kahler = J parallell with respect to the Levi-Civita connection of g =
A\ preserves type (p, q)-decomposition O

pt+q=k ng(M)

4. HOLOMORPHIC BUNDLES AND CHERN CONNECTIONS

(M, J) complex manifold + E — M smooth complex vector bundle of rank &
e connection: C-linear map V: C®°(M; E) — QY(M; E) = C*®°(M;T*M ® E) such that
V(fs)=df ® s+ fVs
for every s € C*°(M; E) and f € C*(F;C)
in a local trivialisation (or gauge) Ely ~ U x C*: Vs = ds+ As for A € Q' (U;C) ® gl(k, C)
change of gauge: g: U — GL(k,C) ~ ¢*V =d+gAg~' —(dg)g™!, i.e. ¢*V(s) = gV (g7 1s)
e (E,h) Hermitian bundle: V unitary if VA = 0 <= in a local unitary gauge V = d + A
with A € QY (M) @ u(k) B
Cauchy—Riemann operator on E: C-linear map dg: C*°(M; E) — Q% (M; E) such that
Og(fs) =0f @ s+ fOgs

for every s € C°°(M; E) and f € C*(E;C) .
connection V ~» Cauchy-Riemann operator 9g = V%!
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e Chern connection: Hermitian metric & + Cauchy-Riemann operator Og¢ on E = 3! unitary
connection V with 0g = V9!

Proof. In a local unitary gauge (E,h)|y ~ U x CF with standard Hermitian metric on C*
— 0g = 0+ a for some a € Q"1 (U;C) ® gl(k,C)
—set V=d+ A where A =a — a* 0
Recall: curvature Fy € Q*(M;End E) of connection V
(i) locally Fy =dA+ANAifV=d+ A
(ii) Fy = dy o dy where dy: QF(M; E) — QFY(M; E) is the exterior covariant differential
(iii) curvature as obstruction to integrability: Fy = 0 = locally Ely ~U x C* with V = d
€ — M holomorphic vector bundle with underlying smooth complex vector bundle F

e Cauchy—Riemann operator ?5: in local holomorphic trivialisation dg = 0 B
e Cauchy-Riemann operator dg ~+ sheaf of “holomorphic” sections O(€) = ker J¢
e Jg 0 Jg = 0 <= E has the structure of a holomorphic bundle &£

Proof. See §2.2.2 in Donaldson—Kronheimer. O

Exercise 5.10

5. EXERCISES

Exercise 5.1 (More linear algebra). Let V' be a finite-dimensional vector space endowed with a
positive definite symmetric bilinear form gg.

(i) Show that A +— go(A-, -) defines an isomorphism between the vector space so(V,go)
of skew-symmetric endomorphisms of (V, go) (i.e. endomorphisms A: V' — V such that
go(Au,v) = —go(u, Av) for all u,v € V) and A2V*.

(ii) Show that wp is the image of Jy under the isomorphism defined above.

(iii) Deduce that any two of go, Jo,wo determine the third one and that U(n) = SO(2n) N
GL(n,C) = SO(2n) N Sp(2n,R).

Exercise 5.2 (The Nijenhuis tensor). Let J be an almost complex structure on M.
(i) Verify that d>~! is tensorial, i.e. d>~!(fa) = fd* 'a for any function f and (0, 1)-form
«. Deduce the existence of the Nijenhuis tensor Ny, i.e. the existence of a section Ny of
Hom (A%YT* M, A29T* M) such that d>~ta = —Nj(a) for every (0, 1)-form a.
(ii) Under the isomorphism

Hom (A% T* M, A*°T* M) ~ (Ao’lT*M)* @ A2OT*M ~ 7O M @ A*°T* M

identify N; with the skew-symmetric map Njy: THOM x TYOM — TO'M defined by
N;(X,Y) =[X,Y]%L

(Hint: use the fact that da(X,Y) =X -a(Y) =Y - a(X) — a([X,Y]) for every 1-form «
and vector fields X,Y.)

Exercise 5.3 (The Newlander—Nirenberg Theorem). In this exercise you discuss some easy aspects
of the proof of the Newlander—Nirenberg Theorem 2.1.

(i) Show the easy implication of the Newlander—Nirenber Theorem: if .J is induced by a holo-
morphic atlas then J must be integrable.

(ii) Show that the converse “hard” implication amounts to showing that, assuming J is in-
tegrable, for every point p € M there exists an open set Y C M containing p and
J-holomorphic functions zj,...,2z,: U — C such that (z1,...,2,): U — C" is a dif-
feomorphism onto its image.
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Exercise 5.4 (Almost complex structures on spheres). In this exercise you construct almost com-
plex structures on S? and S8. The latter is non-integrable and deciding whether S carries an
integrable almost complex structure is a famous open problem. It can be shown (Borel-Serre,
1953) that spheres of dimensions # 2,6 cannot carry almost complex structures.

(i)

Let S? denote the unit sphere S? = {x € R3|||z|| = 1} in R?. Given z € S? identify T,S?
with the plane - C R3. Show that the formula

Jo(u) =z X u,

where x denotes the cross product on R3, defines an almost complex structure on S%. Show
that this almost complex structure is integrable.

(Hint: you can answer the last question without doing any computation.)

The existence of the octonions O implies the existence of a cross product on R” = Im O,
a bilinear alternating map x: R’ x R” — R” with the properties that u x v is orthogonal
to u and v and has norm |u x v|? = |u|?|v|? — (u - v)%. One simply sets u x v = Im(uv),
where uv is octonionic multiplication. Show that the formula of part (i) defines an almost
complex structure J on the 6-sphere S® and that the non-associativity of the 7-dimensional
cross product makes J non-integrable.

Exercise 5.5 (Moser’s trick). In this exercise you prove the Moser Stability Theorem.

(i)

(iii)
(iv)

We begin with some observations about time-dependent vector fields. Let ¢: [0,1] x M —
M be a smooth map such that ¢, = ¥ (¢, - ): M — M is a diffeomorphism for every ¢. Define

a l-parameter family of vector fields {Xt}te[o,l] on M by Xy = dg, .y <%). Conversely,

if M is closed (or if the vector fields are compactly supported) a family of vector fields
{Xt}tejo,1] generates a family {14 }1¢(o,1) of diffeomorphisms with %M = Xothy and g = id.
Let {au}¢epo,1) be a smooth 1-parameter family of k-forms on M. Show that

d * *
Ewt ap =y (%at + £Xtat) .

Let {wi}iejo,1) be a smooth family of symplectic forms and suppose that %wt = du; for
a smooth family {1ut},c(0,1) of 1-forms. Construct a family {X;},c[,1) of vector fields such
that Lx,wy + %wt =0.

(Hint: recall Cartan’s Magic Formula Lxa = d(X sa) + X ada.)

Deduce Moser’s Stability Theorem from parts (i) and (ii).

Let (M, J) be an almost complex manifold and suppose that wy and w; are two symplectic
forms on M compatible with J. Show that w; = (1 — t)wg + tw; is a family of symplectic
forms compatible with J.

(Hint: consider the corresponding family of Riemannian metrics using the fact that the set
of positive definite bilinear forms on R™ is convex.)

Let (M, go, Jo,wo) be an almost Hermitian manifold with w symplectic (such manifolds are
sometimes called almost Kéahler). Consider the sets

J (wo) = {wo—compatible almost complex structure .J},
H(Jo, [wo]) = {Jo—compatible symplectic form w with [w] = [wo] € Hig(M)}
and the subset Y(Jo,wo) C Diffy(M) x H(Jo, [wo]) consisting of pairs (f,w) where f is a

diffeomorphism isotopic to the identity such that f*w = wy. Use parts (iii) and (iv) to
construct a map ®: Y(Jo,wp) — J(wo)-

Exercise 5.6 (Projective manifolds). In this exercise you show that complex projective space CP"
and its holomorphic submanifolds are Kéhler.

(i)
(i)

Show that wps = i0d1og (1 + |z|?) is a Kéhler form on C". Here |2|? = [21]2 + -+ + |2,|%
Show that if ¢(z1,...,2,) = 21_1(1, 29,...,2n) then p*wps = wrs.
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(iii) Show that the charts (U;, ;) defined by

wi: Ui=A{lz0: - 2p] |2 #0} =» C", goi([zoz'-‘:zn]):zi_l(zo,...,éi,...,zn),

where Z; means that we drop the ith coordinates, form a holomorphic atlas on CP™.

(iv) Show that the formula w = pjwrg over UY; defines a Kéhler form on CP", called the Fubini-
Study Kéhler form.

(v) Let M be a complex submanifold of CP". Show that M is Kéhler.
(Hint: consider the restriction of the Fubini—Study Kdhler form to M.)

Exercise 5.7 (Hopf surface). In this exercise you show that there are complex manifolds that
cannot be Kahler.

(i) Let (M,w) be a closed symplectic manifold. Show that the deRham cohomology class
[w] € H3p(M) cannot vanish.
(Hint: use Stokes’ Theorem and the fact that W™ is a volume form.)
(ii) Fix a real number s # 0 and let Z act on C2\ {0} by n - (21, 22) = (€"*21, €™ 23). Define
M* = C2%\ {0}/Z. Show that M is a complex manifold.
(iii) Show that M is diffeomorphic to S! x $3 and conclude that M cannot be Kihler.
(Hint: work in spherical coordinates on C2\ {0} ~ R x S3.)

Exercise 5.8 (Kodaira—Thurston manifold). In this exercise you show that there are symplectic
manifolds that cannot be Kéahler.

(i) Show that if (M, g, J,w) is a closed Kiihler manifold then H!(M;R) is even dimensional.

(ii) Let (n,m) € Z? act on R? by translation (z,y) — (z +n,y+m) and on T? via the matrix
( (1) 711 ) € SL(2,7). Let M be the 4-manifold M = (R? x T?)/Z?. Show that the standard
symplectic form on R? x T? descends to M and defines a symplectic form on M.

(iii) Calculate the first deRham cohomology group of M and conclude that M cannot carry
any Kahler structure.
(Hint: you can either study Z2—invariant closed 1-forms on R? x T? or calculate the funda-
mental group of M, thus its first homology, and then use the fact that deRham cohomology
is dual to homology with real coefficients.)

Exercise 5.9 (Hyperkédhler 4-manifolds). A hyperkéhler triple on a 4-manifold is a triple (w1, w2, w3)
of symplectic forms satisfying

wi Nwj = (51]% (w% +w§ —i—w%) .
(i) Work on R* with coordinates (xg, 21, ¥2,x3). Show that the forms
w; = dxg Ndx; + d.%']’ A dxy,

where (ijk) is a cyclic permutation of (123), define a hyperkéahler triple. Show also that you
can identify R* with the quaternions H so that the almost complex structures corresponding
to w1, wy and w3 using the standard inner product on R* as in Exercise 5.1 are, respectively,
left multiplications by ¢, j and k.

(ii) Let (M*, w1, ws,ws) be a manifold endowed with a hyperkihler triple. Write w = w; and
We = wo + tws. Show that w. A w, = 0 and deduce the existence of an almost complex
structure J for which a 1-form « is of type (1,0) if and only if o A w. = 0.

(Hint: you can use the fact that w. A w. = 0 if and only if w. is decomposable, i.e. it can
locally be written as we. = 01 A O for linearly independent complex 1-forms 601, 0s.)

(iii) Show that J is integrable.

(Hint: observe that dw; = 0 and differentiate the relation aNw, = 0 valid for any (0, 1)-form
a to deduce that d> o =0.)
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(iv) Show that (w,J) are compatible and that, denoting by ¢ the resulting metric, (M, g, J, w)
is Kéhler.
(Hint: show that w Aw. = 0 and deduce that w is of type (1,1) with respect to J. Positivity
of the resulting metric can be shown by arguing that on each tangent space wi,ws,ws must
be linearly equivalent to the hyperkdihler triple of part (1).)

Exercise 5.10 (Bundles and connections). This problem is a collection of three separate questions
about holomorphic bundles and connections.

(i) Show that any choice of Cauchy—Riemann operator on a complex vector bundle E over a
Riemann surface defines a holomorphic structure on F.

(ii) Let (E,h) be a Hermitian vector bundle over a complex manifold and let V be a unitary
connection on E. Decompose the bundle-valued 2-form Fy into (p, q)-types: Fy = Fé’o +
Fg' + FY?. Show that dg = VO! satisfies dg 0 dg = 0 if and only if Fy = Fy'.

(iii) Set Ocpn(—1) = {([z],v) € CP" x C""! |v € Cz}.

(a) Show that the projection onto the first factor induces on Ocpn(—1) the structure of a
holomorphic line bundle over CP™.

(b) Endow C"*! with its standard Hermitian metric and denote by h the induced Her-
mitian metric on Ocpn(—1). Calculate the curvature of its Chern connection.
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